Saturday, December 30, 2006
博士家园::计算数学::概率统计::组合图论::几何拓扑::代数数论::分析方程::运筹控制:: 常用的统计计量数学软件
Thursday, December 28, 2006
PEET-L archives -- September 1996 (#13)
TOC About Writing
Douglas Adams Quotes - The Quotations Page
Common Errors in English
Lynch, Guide to Grammar and Style
Tuesday, December 26, 2006
冬令进补哪种药膳属于你(图)
Award#0544474 - Collaborative Research: Comparative Hydraulic Architecture; An Analysis of Transport Efficiency and Mechanical Constraints
The need for plants to acquire CO2 for photosynthesis results in the passive loss of large amounts of water vapor from their leaves, which must be continuously replaced by the xylem, a transport tissue consisting of thousands of dead, hollow conduits running from the roots to the leaves. Hydraulic architecture determines the capacity and efficiency with which the xylem is able to supply water to the leaves, and thus limits the rate at which plants can gain carbon and grow. In many woody plants, the xylem conduits serve dual functions of water transport and mechanical support, leading to a partial sacrifice of hydraulic efficiency for mechanical stability. The goals of this research are to classify and understand the diversity of hydraulic architecture across major plant groups and growth forms by evaluating the extent of trade-offs of hydraulic against mechanical functions of xylem. This will be accomplished by determining how several key vascular network traits such as hydraulic conductivity, conduit number and area, and water transport velocity change from near the base of the plant to its uppermost branches. These results will be plotted on graphs to generate hydraulic landscapes. The positions of different plant types on these landscapes will indicate the extent to which the mechanical support function of xylem constrains its hydraulic function. Palms and vines are expected to be more hydraulically efficient than trees because, unlike trees, their xylem only transports water and does not provide structural support. Within temperate trees, a negative relationship between hydraulic efficiency and the proportion of wood devoted to xylem conduits relative to other cell types is expected. Finally, restrictions on xylem structure imposed by freezing should make temperate trees less hydraulically efficient than tropical trees. This research will enhance understanding of intrinsic constraints on the growth and productivity of forests and other natural and managed ecosystems. Broader impacts of this work include training and mentoring opportunities for a postdoctoral scientist, undergraduate and graduate students, was well as for Latin American students who will participate in the work to be carried out in Panama at the Smithsonian Tropical Research Institute.
Award#0614813 - Synergistic Effects of Light and Water on Physiological Diversification in the Hawaiian Llobeliads
Irwin N. Forseth, Jr.
Sunday, December 24, 2006
Biophysic101: Lecture Notes
Saturday, December 23, 2006
Dr. Barbara Bond Vegetation water use and stream flow at the H.J. Andrews Experimental Forest
Dr. Barbara Bond
Vegetation water use and stream flow at the H.J. Andrews Experimental Forest
GOAL: The long-term of this project is to better understand how vegetation age, structure, and species composition affects hydrological patterns in small watersheds at the H.J. Andrews Experimental Forest.
BACKGROUND: The vegetation cover within watersheds has an important influence on stream flow, but the specific details of this influence are not well understood. In the Oregon Cascade Range, up to 25% of national forest land has been altered by logging activities since the 1930's, resulting in patches of 20 to 40 ha with vegetation of varying ages and species composition (Jones and Grant 1996). It is important to understand how these changes in vegetation affect the hydrologic cycle in order to manage watersheds for multiple uses that include water supply and slope stability.
Following a vegetation-removing disturbance to a watershed, such as fire or harvesting, peak flows as well as total flows of water generally increase for a period of a few to several years (Amthor 1998, Watson et al. in press). Jones and Grant (1996) determined that forest harvesting increased peak discharges in experimental basins in the H.J. Andrews by as much as 50% in small basins and 100% in large basins. After this initial increases in flow, water discharge decreases over a period of time in many watersheds. In at least three long-term datasets (Hubbard Brook, Coweeta, and Eucalyptus regnans forests of southeast Australia), total discharge from watersheds with the vigorous, recovering forests 10-30 years after a major disturbance was actually less than the initial condition with old-growth vegetation.
Some of these changes have good explanations. The initial increase in flow following disturbance is generally attributed to reduced transpiration due to the low leaf area after the disturbance, resulting in a greater amount of surface flow. In a few cases where flow decreased after harvest, it appears that the finely articulated conifer needles of the original forest intercepted significant fog and cloud water, so water input was reduced when trees were removed (Harr 1982, 1986). In most systems, as vegetation recovers following disturbance, the use of water by vegetation for transpiration reduces outflow. However, some of the interactions between vegetation and watershed hydrology are more elusive. Why is there less discharge from watersheds with recovering vegetation than in the original condition? Amthor (1998) proposed that change in atmospheric CO2 levels are affecting forest water use at Hubbard Brook; in Coweeta, it is possible that a shift in species composition in the recovering vegetation has resulted in increased transpiration. In the E. regnans forests of Australia, the overstory trees of the young, recovering forests had a higher leaf area compared with the original old forest, resulting in higher total transpiration (Watson et al. in press). Also in the old forest there was a better-developed understory which used less water per unit leaf area than the overstory (Watson et al. in press). Still, the transpiration per unit leaf area was much higher for young E. regnans trees compared with older trees. This could result from changes in the hydraulic resistance in the trees themselves as they age (Ryan and Yoder 1997). The changes in water discharge in all of these systems apparently result from combination of changes to vegetation structure, composition and age and possibly climate interactions.
H.J. Andrews (HJA) Experimental Forest has maintained records of water discharge from small basins (60-101 ha) for over 35 years. These are part of a paired-basin experiment. Experimental harvests were conducted in the 1960s in half of the basins, with clear pre-treatment and post-treatment measurement periods. The HJA is also fortunate to have an outstanding team of hydrology researchers who are on the forefront of new concepts and analysis techniques. For example, Jones and Grant (1996) introduced a new level of statistical rigor to watershed research and revealed surprisingly strong influences of vegetation succession and roads on peak discharges. Tracer studies by Wondzell (unpublished) have revealed strong diurnal trends in the flow from Watershed 1; flow increases over night and decreases during the day. Newer, high-precision weirs are now able to measure this change in flow directly; these instruments indicate that some of the small watersheds in the H.J. Andrews show strong diurnal variation and others do not (Post and Jones 2001). It is likely that the diurnal variation is influenced by water use by streamside vegetation, but there are no data to support this hypothesis. Missing from the current research effort at the H.J. Andrews are studies that relate vegetation processes to change in hydrological cycle.
RESEARCH OBJECTIVES:
Objective I. Evaluate and quantify the impact of three components of vegetation structure and composition and structure on vegetation water use. These are:
1. Species composition (especially hardwoods vs. softwoods, and Douglas-fir vs. hemlock). Within a decade after harvesting, hardwoods and young Douglas-fir dominate young stands. As forests age, hardwoods become less prevalent and in very old forests, hemlock replaces Douglas-fir.
2. Sapwood basal area. Although total basal area increases with stand age after harvesting, preliminary evidence indicates that sapwood basal area is lower in very old forests than in young, mature forests.
3. Tree size/age. Preliminary evidence from Wind River and other locations indicates that tree water use per unit sapwood area is significantly lower in old growth Douglas-fir than in
Objective II. Compare and contrast measurements of vegetation water use with stream flow measurements on time scales ranging from hours to decades.
EXPERIMENTAL APPROACH:
The study focuses on two small watersheds in the Experimental Forest. WS1 was cut in the mid 1960's and is used to evaluate vegetation structure and function of "young/mature" forests. WS2 is an uncut control watershed that is immediately adjacent to WS1. The last major disturbance in WS2 was about 450 ybp. The study includes these key measurements:
1. continuous measurements of transpiration in "young hardwoods" (we are using red alder as a surrogate for all hardwoods), "young Douglas-fir", "old Douglas-fir" and "old western hemlock" (additional species and age classes may be added over time).
2. estimates of vegetation composition in the two watersheds, accomplished with vegetation surveys.
3. continuous measurements of streamflow (part of the core LTER measurements).
Transpiration is measured at 20 minute intervals with "Granier-type" sapflow sensors (Granier 1996) installed in 5 to 7 trees of each species/age-class, with at least two sensors per tree (more details on sensor positions is provided below). These trees were cored with an increment borer to determine sapwood depth. It is critical to note that the power requirements for sapflow measurements preclude a good random sample of trees throughout the watersheds. Instead, the sample trees lie in a cluster near the base of the watersheds and thus the data to date are unavoidably biased due to the sampling design. In WS1 trees lie along two "transects", one each of alder and Doug-fir, just above the weir. These run normal to the stream through a pocket of each vegetation type up the southern (north facing) slope. The transects are 50m long, and 7 trees were selected along the transect at roughly equal intervals. Due to limitations of power and equipment, we measured red alder only in 1999; in subsequent years we estimated sap flux in red alder based on relationships between red alder and Douglas-fir in 1999. We began measurements in WS2 in 2000. In WS 2 we selected 5 Douglas-fir and 4 western hemlock (all overstory trees) in a transect on the N side of the stream about 50m below the weir.
Vegetation surveys were conducted in 1999 in WS1 and 2000 in WS2 to quantify the species composition and basal sapwood area of all woody vegetation >1 cm diameter in the riparian zones (arbitrarily defined as 100m swath centered on the stream bed) of the two watersheds. In each WS, we established transects normal to the stream every 200m upstream from the weir. The transects alternated from one side of the stream to the other. Along each transect we established contiguous square plots - in WS1 there were five 10m-square plots and in WS2 there were three 20m-square plots on each transect (plot dimensions were determined for the horizontal plane - i.e., they were slope-corrected). Within each plot we measured the diameter and species of every tree greater than 1 cm diameter as well as height and sapwood depth of 5 trees of each species in the plot, systematically selected to represent the size distribution in that plot. From the sample of trees used for measurements of height and sapwood depth, we developed species-specific regression equations to predict sapwood area from DBH outside the bark. Cover (by percent area) estimates of shrubs and herbaceous species were made using the line intercept technique from a diagonal transect running from the SW to the NE corners of the plots, with species identified when possible.
Scaling procedures: Sap flux density for each individual sensor over each 20 minute period was determined from temperature differentials using equations in Granier (1987). These measurements were scaled to the whole-tree and species level generally using the procedures described in Phillips et al. 2002. In red alder we installed sensors at three depths (0-20 cm, 20-40 cm and 40-60 cm) in five trees and we determined the average gradient in sapflow from the outer to inner sapwood. Using this gradient we "scaled" outer flux measurements in the other trees to a whole tree basis, and then divided by the total sapwood area of that tree to come up with the average sap flux density. In Douglas-fir and western hemlock we installed most sensors at a depth of 0-20 cm, but we also installed sensors at 20-40 cm in 4 of the old-growth trees. We combined information from these four trees with sap flux measurements from Douglas-fir at Wind River to analyze how radial gradients in sap flow are affected by site, tree age and seasonal variation. From this analysis we developed a predictive relationship to estimate radial variation based on measurements in the outer 2 cm of the sapwood, and we then used these relationships to estimate whole-tree sap flow over 20 min intervals for each measurement tree. For hemlock we took advantage of radial measurements of sapflow by F.R. Meinzer at Wind River. Meinzer's data show that sapflow declines linearly from the outer edge of sapwood to the sapwood/heartwood boundary. We used this relationship to estimate whole tree sapflow from measurements in the outer 2 cm in hemlock. We found no difference in whole-tree sap flux density for any species or size/age class as a function of distance from the stream, so we averaged the data (for each time increment) over the total number of sample trees to develop the mean sapflux density for measurement period for each species/size class. We multiplied this value for red alder by the sapwood basal area of hardwoods in WS1 to estimate hardwood transpiration. We multiplied this value by the sapwood basal area of all conifers (which is >95% Douglas-fir) to estimate conifer transpiration in WS1. We multiplied the valued for old hemlock and Douglas-fir, respectively, by the sapwood basal areas of these species in WS2 (which account for >95% of the sapwood basal area of all trees in this watershed) to estimate transpiration in WS2. The sap fluxes over 20 min intervals were summed to obtain daily sap fluxes.
In many cases, individual sensors were not functional over periods of several days. Because of the small sample sizes, dropping these individuals from the overall mean could result in large artifacts in the time-series data. Therefore, we interpolated to fill "missing" data based on relationships among the sensors when all functioned properly.
Streamflow is monitored continuously as part of the core LTER program. During the summer months, 90-degree v-notch weirs are used to precisely measure stream flow variations at 15 min intervals.
References:
Amthor, J.S. 1998. Searching for a relationship between forest water use and increasing atmospheric CO2 concentration with long-term hydrologic data from the Hubbard Brook Experimental Forest. Environ. Sci. Div. Publ. 4833, Oak Ridge Nat. Lab., Oak Ridge, TN.
Bond, B.J. and K.L. Kavanagh. 1999. Stomatal conductance of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiology 19:503-510.
Granier, A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology. 3:309-320.
Harr, R.D. 1982. Fog drip in the Bull Run municipal watershed, Oregon. Water Resour. Bull. 18(5):785-789.
Harr, R.D. 1986. Effects of clearcutting on rain-on-snow runoff in western Oregon: A new look at old studies. Water Resour. Res. 22:1095-1100.
Jones, J.J. and G.E. Grant. 1996. Peak flow responses to clear-cutting and roads in small and large basins, western Cascades, Oregon. Water Res. Res. 32:959-974.
Phillips, N., B.J. Bond, N.G. McDowell and M.G. Ryan. 2002. Canopy and hydraulic conductance in young, mature, and old Douglas-fir trees. Tree Physiology 22(2/3):205-212.
Ryan, M.G. and B.J. Yoder. 1997. Hydraulic limits to tree height and tree growth. BioScience 47(4):235-242.
Watson, F.G.R., Vertessy, R.A., Grayson, R.G. In press. Large scale modeling of forest hydrological processes and their long term effect on water yield. Hydrological Processes, Special Issue on Process Interactions in the Natural Environment.
Wednesday, December 20, 2006
POL: Books page Photobiology books
蒲慕明所长在神经所2006年会上的讲话
各位老师和同学们:早上好!今年是神经所第一次与外单位一起开联合年会,我们有机会与很多香港科技大学的老师与同学一起讨论科学问题,进一步了解彼 此的科研进展,为下一步合作提供基础。我相信这次年会一定会给我们大家带来很大的收获。我先简要介绍一下神经所过去一年的工作进展与下一年的展望。然后谈 一个很重要的问题,就是关于科研创新的问题。
一、组长招聘工作
神经所建立到现在已有七年了。七年对人的一生来说是不短的,我们的张旭老师七年前是一头黑发,现在已灰白了(众笑)。但是对一个研究所来说是很短 的,神经所还非常年轻,套句毛主席的话,我们现在还是“早上八、九点钟的太阳”,将来前途无限。神经所原来的规划是至2010年达到三十个研究组的规模, 现在只有十五个组,招聘的步伐不快,这是由各种原因造成的。本来计划每年增聘四到五个研究组,这样到2010年神经所就能达到目标了。三十个研究组的一个 所可以大致包含神经科学各个领域,是学科相对完整的研究所。假如我们三十个研究组都有很好的工作的话,我们在国际上就会具有竞争力和地位。这是我们的目 标,但是每年要新增加四、五个研究组,需要相当的资源。我们现在是与国际一流单位竞争人才,我们没有足够的资源,而且从今年开始中科院的百人计划实行计划 分配,神经所下五年总共只分配到3个名额,即使入选百人计划,经费下拨一般也要迟缓一、二年,不能帮助我们新的组长们立即建立实验室。今年神经所向中科院 打了一个报告,要求每年多支持点引进人才的启动费,最终科学院还是决定用已经定好的“公式”拨款。我们没有拿到我们要求的引进人才专项经费,所以在招聘资 源方面对于我们这样一个新所来说是非常困难的。但是神经所还是要继续发展,还是要继续做好招聘工作,可能步伐要慢得多。我们招聘的目标不单是数量,更重要 的是质量。所以下几年也许不能扩充到三十个研究组,但我们会尽可能争取发展至二十五个研究组。
虽然在招聘新的研究组长方面有困难,我们在这里的研究组的情况是非常好的,资源是充分的。这有几个原因,一个就是我们神经所几乎把所有资源,包括行 政费用都放到实验室去,我们有一个非常有效的行政机构,事实上如果没有这样一个行政机构我们就不能做到这点。七个秘书管理15个组、168个学生的事务, 一个行政人员常常做二个人的事。还有胡谦等非常具有奉献精神的公用实验室老师,常常是一个星期工作七天。在这种情况下,我们能把许多行政的经费用来招聘、 用来做实验室经费,所以我们实验室的经费是充分的。另一方面,我们研究组长们非常努力,工作出色,能够争取到国家其他经费,包括科技部、基金委的经费。所 以即使我们招聘速度比原来的计划要慢,我仍然是乐观的。我们研究组的工作会做得越来越好,这也是我对下一年的展望。
二、研究生培养工作
神经所一项很重要的工作就是研究生的培养工作。过去这一年我们继续彻底、严格执行硕士生转博资格考试以及已经转博的研究生年度工作报告的制度。我知 道在座的同学都觉得这两项措施压力很大。因为我们在执行过程中确实做得很严格,相当一部分同学第一次没有通过,还需要再考试一次、再报告一次。虽然这些制 度让你感觉到了压力,但这是很好的机会,通过各个老师的意见,你可以真正把自己的研究计划做得更彻底、更完善。这是非常有益的,不要把它当成负担,尤其是 研究生的年度报告。我希望每位同学写好计划书和工作进展报告,我们有固定的格式,大家要按照这个格式认真写。这是练习用英文写作的很好锻炼,是你将来一定 要用的技能。借这个机会做这种训练是非常有意义的,所以我让谢老师再给大家发一次写作要求,请大家认真写好工作进展报告和转博计划书。
三、科研产出
研究所最重要的工作就是科研产出,神经所的科研工作都是围绕基础神经科学,产出主要表现就是论文。论文的数量很容易评估,大家可以数。但怎样客观、 公正地评价科研工作的质量?一般公认最好的方法就是国际同行评审。投送到一流杂志的论文,就是去让高水平的国际同行严格评审。在高水平杂志上发表论文是所 有年轻科学家在科学界建立学术声誉必要的和必经的步骤。在几十年前,也许你可以闭门造车,做你自己有兴趣的工作,不管别人对你的评价如何,但现在不行了。 你所有的工作都需要有资源,是否有资源主要是看你的工作。开始时给每个年轻科学家的资源可以只看他的潜力,但是几年之后每个年轻科学家都要用产出来证明自 己,这是全世界公认的方法。现在很难说等你十年、二十年之后才看你的科研产出,除非你可以说服你所在领域的一些领袖人物,使他们愿意尽最大努力支持你。所 以发表高水平的论文在竞争激烈的科学世界是不可少的。
在这种情况下神经所会有很大的压力,现在我想谈谈压力的问题。我们老师、同学常常说在神经所的日子真不好过,压力太大。工作一定要出成果,要及时发 表论文。每个人都有压力,我想说的是现在全世界所有一流的科研单位没有一个不是有高压力的地方。在这种地方,每个人把这种高压力当成是必然的、必要的,不 可能没有的。你想减少压力,不要有高压力,你可以到二流、三流的单位、学校去做老师、做学生,在那里,老师可以轻轻松松拿终身职,学生甚至可以不发表论文 也能毕业、拿到博士学位。但是在那里工作的科研人员,他们主要是学习、钻研别人做的工作,他们不是产出重要工作的主要来源。所以,你想要做科学的推动者, 你必须做出人家想要钻研的工作,而不只是钻研人家的工作。事实上,许多创造性工作就是在这样高压力的环境下完成的。
四、积极应对各种挫折
有人说我可以承受压力,工作可以很努力,但是这环境太坏,我遇到了各式各样的挫折。即使我愿意努力,这么多挫折实在让我做不下去。所以我想谈谈挫折 的问题。挫折是每个科研工作者都会遇到的,而且是一辈子、永远都会遇到的问题。过去有、现在有,将来还会有,只要做科研就会不断遇到挫折。当然挫折有各种 各样的,包括与科研无关的挫折,如个人的、家庭的挫折等等。今天我要说的是跟科研有关的挫折,比如我们如何面对实验做不出来的挫折?这是我们最常见的。还 有一些跟科研有关但不是真正科学问题上的挫折,比如老师与同学的关系、同学之间的关系,与别人合作过程中遇到的挫折,心里不顺畅。自己做的工作没有得到人 家的认可,包括你的文章被拒,文章署名次序问题等,这些都是挫折。这些挫折虽然与科研不是直接相关,但事实上这些也是大多数科学家会面临的挫折。即使你将 来做了组长、成了世界一流的科学家,你还会文章被拒,还觉得同行对自己的认同度不够,你没有得到应得的声誉。
那么问题在什么地方呢?我认为一个成功的与不成功的科学家最大的差别是在他面对这些不可避免的挫折时,有没有因为这些挫折影响他做出更好的工作?有 没有把这些挫折转化成一种动力?我没有得到同行认可,我就把工作做得更好,使同行们没有办法不承认我在这个领域的贡献,这就是面对挫折的积极态度。这次你 的导师决定这篇文章你不是第一作者,你不但没有停止认真工作,而且更加努力、刻苦钻研,一直到他不得不认识到你的贡献。对于很多挫折我没有一个通用方式去 解决,但是有一个基本原则:不能因为挫折而影响你继续做出好工作的毅力。我常常说困境孕育创造力(Adversity breeds creativity)。我们可以从另外一个角度看待挫折:没有挫折、一帆风顺的环境常常不是最有助于做出创造性工作的环境。
五、创新性研究
现在讲讲创造力或创新(creativity or innovation)。大家都在说创新,整个科技界都在说创新。今天就谈谈我对创新的认识,根据我自己的经验来分析一下怎样的工作是创新性工作。我想把创新性研究的要素列出来,供大家参考讨论。
新颖性(Novelty):概念或假说可以有新颖性,对自然现象有新颖的看法,就是概念的新颖性。发现新的现象也有新颖性,你做了一 些探索性实验,有些自然现象以前没有人看到,你现在看到了。发现已知自然现象的新联系也算有新颖性,你发现这个现象与那个现象有关联的证据,虽然这些现象 大家以前都看到,你提出这些现象之间有关联,就是新颖的发现。你也可以发明一些新的实验方法、新的分析方法,把以前人家做的东西,你用新的方式来处理、来 研究、来分析,这也是新颖性。一个新颖的工作也可以是解决现在有争议的问题,虽然你没有提出新的观念或假说,但是你把有争论的问题解决了,这也是有新颖 性。甚至对很老、很经典的概念,原来是大家都公认的概念,你现在有新的实验去驳倒以前那个概念,也是新颖性。所以有各式各样的新颖性,但所有的新颖性都有 一个令人惊讶(surprising)的成分,能引人瞩目(raise the eye brows)。你需要有目标地去寻找新颖性工作吗? 你是怎么判断你的工作有没有新颖性?我想提出两点:第一,你的工作是否具有新颖性不全依赖于进行前人没有做过的题目。第二,尽管新颖性发现是不可预知的, 但它又是无处不在的,看你是不是能注意到它们、发现它们。常常有学生来问:我有一个假说,某某已经发现这个,另外人发现那个,现在我做这个实验一定会得到 这样的结果,这是不是新颖的假说(novel hypothesis)?我的回答是这样的:首先我要问,假如你的实验结果能支持或“证实”你的假说,它会是令人惊讶吗?一个令人惊讶的假说通常是一个新 颖的假说。假如你还未提出你的假说大家就知道你做出的实验肯定就是那样的结果,那就不是新颖性假说。但是,如果你的实验结果驳倒了你的假说,这反而可能是 令人惊奇的结果。本来大家都这么想,但你的结果却恰恰相反,那很可能是新颖的发现。不过有一点是非常重要的,那就是你所在领域的同行是否会关注你的实验结 果?你跟其他同行科学家说我得到的结果是反的,不是大家预料中的结果,假如同行听了都不在意,那这很可能就不是一个很有意思的新颖工作。这就是为什么在你 完成你的实验之前把你的想法与你的同行交流是非常重要的。这也就是为什么一个能聚集高水平的同行科学家的科研环境,可以在开始或完成工作之前不断地与同行 进行讨论是非常重要的。有意思的新颖性工作就是不管是正的或反的实验结果都能引起大家的惊奇,引起同行的瞩目。要引人瞩目,你的假说或实验必须是重要的, 这里就要提到创新性工作的另一面,就是工作的重要性。
重要性(Significance):创新工作应该不只是新颖的,不是说人家没做过你做了就是创新。创新必须要联系到重要性,新颖性 和重要性是两个不可或缺的要素。我有一个同事,在完成NIH四年项目评委工作后对我说:现在我终于不需要再读那些申请研究“鸡爪对鸡屎的影响”的经费申请 书了。很多申请书的差别主要就在重要性这一点上。在生命科学领域,重要性常常在于你想研究的现象与活体动物中的自然现象的接近程度。举例说大家现在对神经 元凋亡很感兴趣,我要提个申请书,研究“机械力对神经元存活的影响”,我要拿神经元培养皿放在摇床上去摇,然后研究怎样的频率、怎样的振幅可以使神经元凋 亡。我也可以做定量的复杂的数据分析,研究机械力对各种神经元凋亡信号转导途径的影响。各位认为这是非常有意义的工作吗?有人会资助这个工作吗?当然大家 都会摇头,没有什么意思嘛!你只是用摇床去杀死细胞,你做这个实验有什么意义呢?你要问的是在生理条件下,是否有类似的机械力存在,是否会杀死神经元。我 还可以提出另外一个申请,去研究“机械力对神经元功能的影响”,也用培养神经元。我们都知道动物在生长时,组织生长伴随着的力可能会影响神经元,包括机械 性压力对神经纤维的生长、神经元功能的影响。神经元对机械力敏感的离子通道可能会开放,导致了信号转导,影响神经元的功能。我建议去测定组织生长可能产生 的机械力,并用微玻璃管在培养皿中的单个神经元上施加类似的机械力,以观察对神经纤维生长和神经元功能的影响。这样的申请书可能会得到同行评审的支持,并 且认为是一个有意义的工作。在生命科学领域,判断工作是否具有重要性的一个很基本的标准就是必须从生物体相关性来考虑你的工作的意义。最后,你的工作的重 要性不是你一个人说了算,通常是由你所在领域的同行的意见来决定。这就是为什么我们需要有论文指导小组,帮助你判断你的论文工作是否有意义。这就是为什么 我们需要送文章到高水平的杂志,让高水平的同行来评审你的工作是否有意义。我们组长的研究工作的意义,同样也需要让国际一流的科学家来评审。
连续性(Continuity):刚才我说了新颖性、重要性,创新工作还要有连续性。我说的连续性是指科学进展都是基于现在已有基础 之上的。创新工作不是凭空出现的,即使最新颖的发现、最重要的创新工作,像爱因斯坦的光电效应研究也是基于普朗克的量子概念,相对论也是基于先前测量光速 的研究,基于Maxwell,Poincare,Lorentz等理论和数学基础之上发展出来的。没有一个创新性工作不是基于已知科学结构、概念框架、实 验和分析方法。你的同行必须能够理解你的工作,这就是创新性工作的连续性。举一个极端的例子来说,“特异功能”非常新颖,你也可以说是非常重要的。 即使这些现象有重复性,但是它们不能基于我们现在已知的物理和化学原理以及对人类感觉系统的认识来理解,也不能通过现在已有的科研方法来进一步研究分析, 所以它不是创新。
独特性(Uniqueness):创新工作还有比较微妙的一面,就是它的独特性,创新性的研究往往在探索途径上显示其独特性。关于这 个问题是有争论的,有人说科学发现没有什么独特性,今天你没发现,明天张三、李四同样也会发现。但是我的同事著名分子生物学家Gunther Stent一直强调科学工作与创造性艺术(creative art)一样,都具有其独特性。每个一流的科学创新工作与艺术篇章一样,都烙下了创作者的个人印记。所以有时虽然结果是一样的,但是一个漂亮的创新工作能 把许多关键实验或证据巧妙地联系在一起,解决一个重要问题。换别人也许也能解决这个问题,但是解决的手段和方法可能要复杂得多,有些实验可能不大合适甚至 不大可信。虽然得到了同样结论,但是取得结论的过程远不够简洁、漂亮、有确定性(definitive)。也就是说完成每个重要的创新性工作就像创造一件 艺术品,科学家留下了他个人的印记。
完整性(Completeness):一流的创新性工作常常具有完整性,就像画素描,必要的笔划都在那里。完整性与创新性工作的独特 性直接相关,因为一个完整的形象如何被呈现于世是由各个科学家和艺术家他们自己决定的。就像画素描,重要的创新性工作常常并不需要包含所有的细节,但是必 要的都在那里。一个二流的科研工作可能就是因为少了几笔。因为少了关键性的几笔,工作就不太有说服力,对于这个领域的贡献也就不够明确。
及时性(Timeliness):创新的另一要素就是及时性。创新工作要在相关领域里产生短时程或长时程的影响,常常需要及时出现。 所以能否有及时性是创新工作是否产生影响的一个因素。但是并不是所有创新性工作都是及时的,有的创新工作是早产的,出现时不被重视,其重要性多年之后才被 发现。我们常常讲孟德尔的遗传定律是早产了几十年。但是一般来说及时性能帮助创新工作产生影响力。关于创新工作的完整性和及时性,我有些个人的经历和想法 以后有机会再谈,现在讨论更实用的问题,就是如何进行创新工作。
六、如何做创新工作
科研工作怎样能有创新性?创造力是从何而来的?创造力能否学习? 这些都是难题,我不能声称说我有答案。在三十五年科研生涯中,我不断努力去做创新的工作,我只能谈谈我自己的经验和感想。
广铺触角(broad scientific exposure):首先要学习把你的触角铺得广。我刚才说许多创新工作是把表面上不 相关的现象联系在一起,别人没有想到这样的联系,你想到了,这就是令人惊讶、引人瞩目的创新。很多创新工作的源泉是“联系”。所以要有广泛接触、你的触角 铺得广是做出创新工作的一个有益的条件。就拿听学术报告来说,如果你认为不是与你有关的工作,就没有兴趣去听,那你就错了。事实上你需要常常听那些与你的 工作好像无关的报告。听完这些报告你可能会突然有些想法、有些灵感,可以把别的领域的东西引用到你自己的领域来,做出创新工作。去听与你无关的报告可能比 听与你工作直接相关的报告更重要。参加会议也是这样,有时参加与你工作无关的会议比参加与你工作直接有关的会议更有收获。今天香港科技大学叶玉如教授也在 这里,大概15年前,我在巴黎参加了一个与我没有直接关系的会,我以前不认识的叶教授也在那个会议上,我们谈到她做的神经营养因子受体的工作,谈的过程中 我们想到既然神经营养因子对神经生长与神经元存活有这么大影响,也许对神经突触功能也有影响,所以决定合作试试研究神经营养因子对神经突触功能的影响。我 们回去后就马上动手做,完成后,1993年出了一篇文章,开创了突触可塑性研究里的一个小领域。所以把触角放远对做出创新性工作是非常有益的。
探索历史(Learn the history):学习与你研究工作相关的历史对做出创新性工作也是非常有益的。我刚刚说创新性工作 都是有连续性的,都是建立在前人工作之上的。我在上课时常常要求同学们,读文献不要只看文献描述的工作(What was done?)。还有四个“W” - 你也应知道,是谁做的(Who did it?) 、什么时候做的(When?)、在哪里做的 (Where?)、为什么会做这工作(Why?)。知道创新工作的来龙去脉,将帮助你在你这个特定时间、特定情况下做出与以前那些工作一样具有创新性的工 作。所有的科学论文从表面上看都是非常合乎逻辑的。陈述的通用顺序(“科学八股文”)都是像这样的:前人发现这个、发现那个,因而我们提出这个假说,做这 样工作,得到这样结果。其实很多工作不是这样来的,而且常常是倒置的。人们偶然碰到一个现象,然后想到底怎么会是这样的?最后决定可以这么解释,可以和前 人发现的这个、那个现象有关,才提出这个假说。科学八股文现在已成为科研写作的标准模式,没有真实反映科研工作的整个过程,需要你化很多力气才能找出来龙 去脉。一些二十世纪初期的科学论文不是这样的。作者会诚实地告诉你他为什么做这个工作,原先可能希望得到其他结果,但是没有发现他想要的结果,可是在偶然 之中得到了现在的发现,整个来龙去脉都跟你讲清楚了。为了简化或修饰,现在的论文都把真实的来龙去脉修改了。
想了解重要的创新工作的来龙去脉,你就要读科学史、读科学家传记、要读科学家写的东西。二十世纪生物界最重要的就是分子生物学革命,这是怎样发生 的?是谁做的?他们为什么能做出革命性工作?我一直建议每位同学、老师都要读“The Eighth Day of Creation”这本书,是Horace Judson化了十多年功夫、访问了上百个科学家、从访问录音带整理出来的历史。从四十年代中期到六十年代中期这二十年期间所有重要的分子生物学工作的历 史都记录下来。它告诉我们分子生物学革命是怎样产生的。了解这些历史远远比上一门分子生物学课重要、比读一百篇最新的分子生物学论文重要。我在阅览室放了 三本“The Eighth Day of Creation”,我想问问有几位同学看过?看几页都算,请举手…… 好像还是少数人读了这本书。 三本书在阅览室,有空就可以去读,读多少是多少。在我们的阅览室还有许多类似这样的书,我希望大学都能抽出间隙时间,暂时抛开实验工作,化点时间到阅览室 去读那些书。
挑选性阅读(Selective Reading):谈到读书,我想讲下面与创新性直接有关的,就是挑选性的阅读。你所在领域的文章 不要出一篇读一篇,一下从电脑里下载一百篇,把你的领域所有文献全部下载,整天坐在那里读。对初学者来说,这种大量的阅读对你的健康是有害的(众笑),对 你的创造性思维是有害的。为什么?这些文献把你的脑筋框住了,脑子里一大堆信息,你不知道怎么分析这些信息,不知道它们的重要性,哪些信息可靠?哪些不可 靠?你都没有判断力。你全盘接受,把整个思路搞乱了。即使你已进入这个领域已经有段时间了,也不需要读你所在领域发表的每一篇文章。那你需要读什么?你所 在的研究领域的重要综述你都要读,很多重要综述文章是由你所在领域的领袖人物写的,他们知道领域的研究现状、什么是重要的研究工作、什么问题已有定论、已 经解决了、什么是现在尚未解决的问题,这些综述一个个跟你讲清楚。从那些综述中你可以发现一些重要的原始文献(包括以前的和现在最新的文献)需要你去钻 研。认真读完这些,你就可以做你的研究工作了。只要是你所在领域的公认的尚未定论的问题,你就去做。现有的文献中有太多不完整、不准确、甚至是错误的工 作。你实在没有必要浪费时间去钻研那些文献中的每个细节。没有定论的问题,你就去做,去发现新的现象,去提出你的假说,设计实验去验证。等你的工作有结果 时,你再去读那些与你的研究工作有关的文献,这时你已有经验,你的阅读也有了针对性。你去找那些与你的工作有关的文献,看人家是怎么做出来的?为什么你的 工作与人家不一样?不要担心你现在做的工作可能与已完成的工作有重叠,任何一个实验存在着许多变数,与以前别人做的实验完全重叠的几率是非常小的。在你已 得到了实验结果后,这时你可以通读与你工作相关的文献。因为现在你能有目的、而且有经验去与别人比较你的工作结果。如果你的结果与别人不同,那你现在就可 以去发现为什么不同。这就是有挑选性的阅读,特别是刚开始入门的研究人员,我认为这样的阅读方法更适当。
刚才我说只要是你所在领域公认没有定论的问题,你就去做,你的工作就可能有创新性的贡献。但是, 已有定论的问题有时也可以去做。这就牵涉到阅读的另一面,就是与我先前讲到的探索历史有关。我建议你有挑选性地去探索已有定论的,大家公认的概念(或假 说)的历史,阅读一些得到这些概念的 经典文献。你很可能会发现这些概念的实验基础不都是牢不可破的,有些实验所依赖的技术现在看来可能是有问题的。我认为这种情况是你做出重要贡献的一个好机 会。你现在可以设计一个新的实验,用以前没有的新技术重新验证大家已接受的概念,你可能会做出重要的贡献。下两种情况可能会发生。第一,你的新实验对那些 已有概念提供了新的证据,你用新的技术进一步巩固了目前已有的科学概念,这也是创新性的贡献。第二,如果你的运气好,你可能会发现反驳那些已有概念的证 据。遇到这种情况,你可是中大奖了!你将通过否定或修正目前已有定论的概念或假说对科学做出重要贡献。总而言之,重新研究以前“已有定论” 的问题与探索新的尚未解决的问题,一样是推动科学进展的创新工作,因为科学的进展就是对我们理解自然现象的已有概念或假说的修正。所以,选择性地阅读你所 在领域的重要概念或假说的经典文献,你可能会发现做出重要的创新工作的机遇。
敢于冒险(taking risk):创新工作常常需要冒险。很多新的工作可能引导重要结果,但也很可能会失败,人家不敢去做,你敢 做吗?就像其他任何领域的人一样,科学家们有各种各样不同的性格。一些人不愿去冒险尝试新的工作,他们宁愿延伸以前的工作做出他们的贡献。然而,许多真正 重要的创新工作是需要大步向前迈进,冒险走人家没有走过的路,用人家没有用过的方法。对于初学者来说,在尚未学会怎样一步一步踏实地进行科研之前,冒险显 然是不合适的。但对于已经成长了的科学家,在自己所在的研究领域已有多年的经验,敢于冒险是做出重要创新性工作的必要步骤。我常喜欢用胡适的一句话,就是 “大胆假设,小心求证”。大胆假设需要冒险,而小心求证就是确保你的冒险能得到真实的结果。在去年的年会上,我已经讲了许多关于怎样形成好的假说,怎样严 谨求证你的假说的个人体会。
初入门的学生怎样学习敢于冒险创新的精神呢?让我们从每天收集到的实验数据做起。我有这样一个建议:对于你获得的所有实验数据,不管它们是否新颖, 你应该大胆尝试去用以前没有用过的新方法去分析、去作图。用新的方法,你可能会得到新的信息,甚至会引导出创新性的发现。我常常听我们的同学说:以前文章 就是这么分析和作图的,人家也发在很好的杂志上,我这样做不是就可以了吗?我说你要大胆,不要人家怎样做就照着做,那就不是进步。如果你能想出一个好的办 法分析你的数据或作图,这已经是创新了。甚至你会遇到更好的境况-你从以前的文献中找不到可以教会你处理数据的方法。你不知道怎么分析,怎么作图,没有范 例可以参照。如果真是这样的话,那么我更要恭喜你,因为这是原创性工作的明显迹象, 你可能已经做出了具有原创性的工作。当你所创造的分析作图方法发表后,可能成为别人以后参照的范例。
正面对待批评(Positive attitude towards critiques):学习具有创造力,你必须学会用积极的态 度正面对待学术批评。我不是说你永远全盘接受别人的批评,不假思索、不辩驳就“写检讨”。我是说你应该严肃地思考别人的批评,把它当作对你工作的挑战,经 过理性思考后把它反应到你的工作中去,而不是立即采取感性的反弹反应。这点我觉到神经所很多同学非常欠缺,对我们的论文指导小组老师给的意见,同学常常有 反驳的说法,许多反驳不是基于认真分析老师的意见的基础之上做出的反应。很大程度上是保自己的面子。有些同学总是认为自己很聪明,所有问题都想到了,不愿 认真考虑别人的意见。
除非你真的是像爱因斯坦或莫扎特那样的天才(没有人知道他们的创造力从何而来),你需要通过其他的科学家对你的工作的批评来帮助自己、提高自己的创 造力。创造力常常是在一群赋有创造性思维的科学家的批评中产生,当你不断地面对各种科学性挑战,并愿意接受和解决这些挑战,你的思维就会变得越来越赋有创 造性、越加尖锐、老练。正面地对待批评的态度对一个科学家的成长是非常重要的,越能虚心听取别人的意见,认真思考批评意见的积极面,你越能提高自己。神经 所的组长们的科研水平在过去的几年中为什么不断地提高?在很大的程度上是由于为了把我们的论文发表在高水平的杂志上,我们必须不断地认真思考并积极反应许 多高水平杂志审稿者(包括许多具有创造性思维的科学家)对我们工作的批评。我们就是通过高水平的审稿者对我们工作的严厉的(有时是非常痛苦的)批评来提升 我们的科研创造力。
向有创造性思维的科学家学习(Learn from creative minds):就像我上面所说,创造力往往起源于与具有创造 性思维的科学家们的交流。这就引出我今天要讲的最后一点,那就是要向有创造性思维的科学家们学习。20世纪前五十年,Cavendish实验室可能是全世 界创新科学工作最集中的地方,那个地方到底有什么特别?就是有一群具有创造性思维科学家。进去的人接受熏陶后,一个个变成具有创造力的科学家。我们不知道 创造力怎么来的,但是有一点是可以确定的:一个聚集了许多赋有创造力的科学家的地方是培养创造力最好的地方。我们神经所没有十几个诺贝尔奖获得者整天绕着 你转。所以退而求其次,你自己去找机会,你要积极地与到神经所访问的许多科学家交流,积极地参加神经所所有的讲座和研讨会。甚至更有效的,你可以上网或到 我们的阅览室去查找这些具有创造性思维的人写得东西。每个大科学家都有传记或自己写的自传,你认真看看他是怎样做出好的工作来的,你看多了,慢慢就会改变 你的思路,使你变得更赋有创造力。简单地说,我确信认真研读赋有创造力的科学家的作品是培养创造力的一个有效的途径。
结语:困境中的挑战
最后,让我回到有关神经所发展的这个话题上。神经所目前是处于困境之中。为什么?神经所要成长,我们的科研工作和招聘工作要与国外一流科研机构竞 争,但是我们没有国外一流科研机构拥有的资源和宏观科研环境,这是一个困境。然而神经所过去七年的发展让我确信我们最终一定能克服这样一个困境。
为什么我能有信心?自神经所成立以来的七年中,除了得到与其他研究所一样的正常运行费之外,中科院每年向神经所只多提供了200至300万人民币的 所长基金作为一个新的研究所引进人才的专项经费。神经所所有的资源(包括各个研究组从其他部门得到的科研经费)总额每年低于350万美元,这还不如美国一 个几十人的实验室的资源。但是我们还是能快速发展,离国际一流科研机构的目标已越来越近。神经所至今所取得的成果靠的不是从政府那里得到大量资源,靠的是 新的科研管理机制,靠的是神经所老师和学生没日没夜地在实验室工作,靠的是我们坚守建设世界一流科研机构的理想,坚持抵制旧体制旧观念的影响。如果从科研 资源角度来看,神经所已取得的科研进展在中国许多其他科研机构同样也可以实现。这才是神经所的经验对中国科技发展的真正意义。没有一个国家可以只靠巨额投 资到少数精英单位就能成功地发展科学事业,并引以为豪。中国科技的长远健康发展需要的是许多科研机构普遍提升它们的科研水平。
神经所的组长和同学们也处于困境之中。每位组长都要做出好的工作,出好的论文,建立他们的学术事业。组长们怎样在博士后不足和实验室里充满了许多没 有科研经验但又是“雄心勃勃”的学生的情况下,与国际一流的同行竞争?同学们怎样能够在与国外一流科研机构有差距的神经所环境下,做出一流的工作,这都是 困境。还是一句老话,困境孕育创造力。我希望每个研究组都能克服目前的困难,神经所的科研进展一年比一年好,年会内容一年比一年丰富。 今天就讲到这里,下面是工作进展报告会。
http://www.ion.ac.cn/chinese/news/info.asp?ID=50Tuesday, December 19, 2006
973项目
Index of /mathdoc
Thursday, December 14, 2006
Joshua B. Fisher: PROGRESS REPORT
Quantifying Evapotranspiration in California Forest Ecosystems:
Remote Sensing vs. Flux Measurement
Proposal Recap
Evapotranspiration, a major component in terrestrial water balance and net primary productivity models that control larger general circulation and global climate change models, is difficult to measure and predict, especially on a landscape spatial scale. The objectives of my study are to estimate evapotranspiration from remotely sensed data by scaling ground-based measurements and ecosystem models to FLUXNET data and satellite remote sensing. Both NASA’s Earth Observing System and a global network of ecosystem flux measurement sites (FLUXNET) have produced water vapor estimates that will be validated and analyzed in this project at two study sites in California: Tonzi Ranch (P.I. Dennis Baldocchi) and Blodgett Forest (P.I. Allen Goldstein). I will examine uncertainties in remotely sensed data for evapotranspiration modeling, and offer methodological recommendations by documenting problems and solutions from working with such data and scaling models. It is critical that the observational and modeling activities be linked together, as observations that do not exist in the context of a model-based hypothesis can provide data but little insight, while models unconstrained by observations are frequently of little use in explaining the past or present, let alone for predicting the future. This project, as an integral part of water and energy cycle research, is part of an ultimate objective to close the water budget worldwide; the overall goal is to deliver reliable estimates of precipitation minus evapotranspiration over the whole surface of the earth, and success will depend on a combination of measurements and model estimates of evapotranspiration.
Current Work and Results
Plant Ecophysiology
As my project scales from plant to ecosystem to landscape, I shall commence at the plant ecophysiological level. No biophysical variable is directly measurable at a global scale; consequently, none can be comprehensively validated (Running et al. 2000). A coherent Earth science research strategy must combine findings from global observations with insight gained from specialized studies; in situ measurements made at the Earth surface or in the atmosphere provide “ground truth” against which space-based measurements are compared, thus increasing our knowledge of processes through comprehensive characterization of specific regions, which is not usually possible with remote sensing techniques. To gain understanding of plant-water relations, I studied plant ecophysiology under Professor Todd Dawson. Relevant topics included: the principle of limiting factors, plants and microclimates, radiation balance and leaf energy budgets, stomatal and biochemical control of leaf gas exchange, stable isotopes, water-use efficiency, variation in photosynthetic pathways and carbon allocation, photosynthetic adaptation to light and temperature, canopy architecture and productivity, water in plants and in soils and the atmosphere, root systems and water capture, water use and tissue water relations, plant architecture and hydraulic conductivity, and adaptation to water stress and nutrient availability. These plant-level characteristics will guide ecosystem and landscape responses, which will influence larger-scale modeling.
I have begun my field site and measurement preparation by logistically planning collaborations with the research groups and principal investigators at Blodgett Forest and Tonzi Ranch. Furthermore, I have been reading extensively on measurement methods and theory for sap flow and soil evaporation. Blodgett Forest Research Station (38°53´N, 120°37´W, 1315 m) is a research forest of the University of California, Berkeley (Goldstein et al., 2000). The forest was planted in 1990 and was dominated by ponderosa pine trees (Pinus ponderosa Doug. E. Laws), the most common conifer species in North America. The canopy also included individuals of Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), giant sequoia (Sequoiadendron giganteum), incense-cedar (Calocedrus decurrens) and California black oak (Quercus kelloggii). The major understory shrubs were manzanita (Arctostaphylos spp.) and Ceonothus spp. (Xu et al., 2001a). In 1997, about 25% of the ground area was covered by shrubs, 30% by conifer trees, 2% by deciduous trees, 7% by forbs, 3% by grass and 3% by stumps. The forest area was in a stage of rapid growth, as exhibited by the 10% increase in leaf area index (LAI) between the 1997 (2.9-4.2) and 1998 (3.2-4.5) growing seasons. The site is characterized by a Mediterranean climate with an average annual precipitation of 163 cm (180 cm in 1997 and 117 cm in 1998), the majority of which falls between September and May, and almost no rain in the summer. The soil is a fine-loamy, mixed, mesic, ultic haploxeralf in the Cohasset series whose parent material was andesitic lahar. Tonzi Ranch (38° 25.896' N, 120° 57.959' W, 177 m) is a savanna site dominated by Blue oak (Quercus doublasii) and grazed grassland (bromus, frescue, oat, medusa head, rose clover) with scattered gray pine (Pinus sabinianai). The climate is also Mediterranean, although the site receives far less precipitation (56 cm annual mean) than does Blodgett Forest. The soil is of the Auburn series and is loamy, mixed, superactive, rocky, silt. I plan to set up sap flow measurements this summer on 6 ponderosa pine trees, 3 manzanita and 3 Ceonothus shrubs, and set up mini-lysimeter measurements of soil evaporation at Blodgett Forest. The selected trees will be coupled with respiration measurements managed by a colleague within my research group. Sap flow of shrubs is unique to understanding the partition of sub-canopy water use; my measurements will also be used to validate and partition a newly installed sub-canopy flux tower. Analogously, I will set up parallel sap flow measurements on 6 Blue oak trees, and set up mini-lysimeter measurements of bare soil evaporation and soil + grass evaporation. Similarly, the selected trees will be coupled with respiration measurements and will be used to partition a sub-canopy flux tower.
Ecosystem Ecology
As I scale up from plant-level to ecosystem scales, the functioning of plants begin to act as interacting systems in a different functional context. To understand ecosystem function and responses to water, I studied ecosystem ecology under Professors John Battles and Whendee Silver. Relevant topics included: water balance and budgets in global patterns of ecosystem distribution, energy and carbon balance, soil development and biology, nutrient cycling and decomposition, net primary productivity, population dynamics, equilibrium and non-equilibrium models of ecosystem dynamics, ecosystem development during primary and secondary succession, resource gradients on landscape patterns in ecosystem structure and function, biodiversity, and climate change. Ecosystem characteristics will guide the scaling of plant level measurements via sap flow to stand level responses via leaf area index (LAI) and percent cover. These same characteristics will guide scaling to remote sensing based on biophysical variables that can be made from various band spectrums like the normalized difference vegetation index (NDVI) and LAI relationship, temperature and thermal bands connection, and soil moisture and microwave spectrum link.
In my original proposal, I had planned on comparing a suite of process based and empirical evapotranspiration models (e.g. Monteith, 1965; Priestley and Taylor, 1972) to the ground-truthed measurements from the tower and tree scale measurements because remote sensing cannot detect evapotranspiration directly and thus evapotranspiration must be derived from models driven by various vegetation and meteorological variables. Evapotranspiration models vary widely in complexity from simple temperature driven methods to multi-layer process-based methods. Very few studies have compared evapotranspiration at forest ecosystems or FLUXNET sites not only because of a general focus on agriculture, but also because of the difficulty of obtaining evapotranspiration measurements for such an ecosystem. I have completed two papers on this objective, one of which I am primary author on and has been submitted to Environmental Modeling and Software, and the other of which I am secondary author on and has been submitted to Journal of Hydrology. The first paper scrutinizes the models in-depth, examines the mathematics and environmental variables, and includes uncertainty analyses; data used are from two growing seasons at the Blodgett Forest FLUXNET site. The second paper extends the analysis to multiple FLUXNET sites and focuses on site differences and similarities governing the model outcomes.
Remote Sensing of Natural Resources
Scaling from ecosystem measurements and evapotranspiration models to remote sensing relies on a combination of image processing, analysis and modeling. To understand remote sensing data acquisition, analysis, information extraction, and integration into geographic information systems (GIS), I studied Advanced Remote Sensing of Natural Resources under Professor Peng Gong. Relevant topics included: image calibration (radiometric, geometric, topographic), image enhancement (filtering, data reduction and transformation, texture measures), interpretation, classification, accuracy assessment, linear feature extraction, change detection, and multiple data source integration. In line with my NASA Earth System Science Fellowship, I focused on how spectral values translate into biophysical variables such as evapotranspiration; and, if effective models are developed, how we can validate those estimates since we cannot measure evapotranspiration directly on such large scales. Although many models exist that estimate evapotranspiration using remote sensing, the majority of those require ground measurements or weather station inputs. These inputs are infeasible in relatively inaccessible areas of the globe.
I reviewed two models that estimate evapotranspiration solely from remote sensing digital numbers: the “Simplified Method” (Jackson et al., 1977) and the NDVI-DSTV Triangle Method (Chen et al., 2002). To validate these models, I applied them to the Blodgett Forest FLUXNET study site using EO-1 imagery (Figure 1). The “Simplified Method” is used to obtain the integrated daily evapotranspiration from surface radiant temperature over variable vegetation (Carlson and Buffum, 1989; Carlson et al., 1995; Lagouarde, 1991; Lagouarde and McAneney, 1992; Nieuenhuis et al., 1985; Sandholt and Anderson, 1993; Seguin and Itier, 1983). The “Simplified Method” was designed to estimate evapotranspiration from a very few easily obtainable measurements, these being the surface radiant temperature near the time of local maximum (about 1300 h local time), a corresponding air temperature, and the net radiation integrated over a 24-h period. A common form of the model is as follows: LE = RN – B(Ts – T50m)n (cm/day) where LE is evapotranspiration, RN is net radiation, Ts is surface temperature, T50m is the air temperature at 50-m (obtainable from some weather stations and remote sensing), and B and n are functions of NDVI. The NDVI-DSTV (diurnal surface temperature variation) Method is based on the hypothesis that a triangle shape would result from a plot of NDVI and the difference between the surface temperatures obtained at day and night. Presence of green vegetation is a major determinant of evapotranspiration from the land surface due to enhanced surface roughness increasing turbulent exchange of water vapor and plant roots extracting water from the soil more rapidly than the water can diffuse to the soil surface (Smith and Choudhury, 1991). A multiple-regression equation from the values reported by Chen et al. (2002) for seven major land-cover types in south Florida is: ET = 6 + 6.4NDVI – 0.22DSTV. Surface temperature for both models can be estimated from the thermal bands in remote sensing alone, as specified by Kerr et al. (1992): Ts = C x Tv + (1 – C)Tsoil; Tv = -2.4 + 3.6(Thermal 11mm) – 2.6(Thermal 12mm); Tsoil = 3.1 + 3.1(Thermal 11mm) – 2.1(Thermal 12mm).
Although the “Simplified Method” significantly overestimated evapotranspiration relative to the slight overestimation by the NDVI-DSTV Triangle Method, the “Simplified Method” is more physically based than is the NDVI-DSTV Triangle Method because the former is bounded by net radiation. The upper bound to potential evapotranspiration should be the net radiation (under relatively stable conditions). According to energy balance models, incoming net radiation is partitioned into latent heat, sensible heat, and heat absorbed by the ground—therefore, latent heat, as a fraction of net radiation, should not exceed net radiation. A major problem with both models is the lack of soil moisture information—this absence is notably evident in areas or times of drought-stress such as in California. In the “Simplified Method,” only the surface temperature might increase if there was no soil moisture, but the estimated evapotranspiration would still be heavily weighted towards the net radiation. If there is no soil moisture to evaporate or transpire, then the net radiation becomes completely unimportant no matter how high or low it is. The NDVI-DSTV Triangle Method begins with an initial evapotranspiration of 174 W/m2 to add to a value from the NDVI that would theoretically range from 0 to 185 W/m2 (maximum of 359 W/m2). To account for lower bound from the soil moisture-surface temperature relationship, the DSTV would have to be 56ºC to estimate a zero evapotranspiration flux. These values are unrealistic, but not impossible, and the relationship between surface temperature and soil moisture must be examined closer to assess the lower bound of these models. Soil moisture, which varies widely throughout a landscape, affects land evaporation and plant transpiration, two processes that link the fluxes of energy (sensible and latent heat), water and carbon between land and atmosphere. New research has shown that wavelengths in the microwave portion of the spectrum respond to the amount of water present in the soil. Recent developments in both science and associated technologies now make the exploitation of the microwave region for soil moisture mapping feasible.
Sociology of Natural Resources
In addition, I have worked on furthering the exposure and application of GIS and spatial statistics into the social sciences. I have submitted an abstract to the conference of American Public Health Association on using GIS and spatial statistics for Environmental Justice and Air Toxics. I have a manuscript in preparation that I plan to submit following the conference.
Plans for the coming year
This summer I plan on working extensively in the field to gather data, processing satellite imagery for both field sites, and coding and testing some terrestrial ecosystem models such as BIOME-BGC, which is designed to simulate hydrologic processes across multiple scales (Running and Hunt, 1993). Remote sensing data integrated within an ecological process model framework provides an efficient mechanism to evaluate scaling behavior, interpret patterns in coarse resolution data, and identify appropriate scales of operation for various processes (Kimball et al., 1999). BIOME-BGC has been used to compare estimates of hydrologic processes to observed data for different boreal forest stands (Kimball et al., 1997), used to simulate water balance and evapotranspiration over a historical 88-year record for a broadleaf forest (White et al., 1999), and coupled with remote sensing information to evaluate the sensitivity of boreal forest regional evapotranspiration (Kimball et al., 1999). In addition to BIOME-BGC, I will investigate the Boreal Ecosystems Productivity Simulator (BEPS), which is based on the same principles as BIOME-BGC, but BEPS is modified to better represent canopy radiation processes (Chen et al., 1996; Liu et al., 1997). BEPS outputs spatial fields of evapotranspiration, and it has been used to upscale tower measurements of NPP to the Boreal Ecosystem-Atmosphere Study (BOREAS) study region by means of remote sensing and modeling (Liu et al., 1999). Further, I will consider a simple model of energy exchange between the land surface and the atmospheric boundary layer, driven primarily by remote sensing data, that partitions surface flux into latent and sensible heat (Mecikalski et al., 1999). I plan on taking my Ph.D. qualifying exam in the Fall, and will continue to expand my knowledge breadth with classes in soils and statistics.
Support
I will work closely with my UC Berkeley graduate advisor, Dr. Greg Biging, whose research is focused on remote sensing of natural resources. I will be working in conjunction with the Center for the Assessment and Monitoring of Forest and Environmental Resources (CAMFER) at the University of California, Berkeley, led by Drs. Greg Biging and Peng Gong, who both specialize in remote sensing of natural resources; CAMFER is a NASA-supported Center for Excellence in Remote Sensing Applications. At the Blodgett Forest field site, I will work with Dr. Allen Goldstein and his research group; at the Tonzi Ranch field site, I will work with Dr. Dennis Baldocchi and his research group. Furthermore, I will be collaborating with the Numerical Terradynamic Simulation Group (NTSG) at the University of Montana, led by Dr. Steven Running.
References
Carlson, T.N. and Buffum, M.J., 1989. On estimating total daily evapotranspiration from remote surface temperature measurements. Remote Sensing of Environment, 29: 197-207.
Carlson, T.N., Capehart, W.J. and Gillies, R.R., 1995. A new look at the Simplified Method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54: 161-167.
Chen, J.H., Kan, C.E., Tan, C.H. and Shih, S.F., 2002. Use of spectral information for wetland evapotranspiration assessment. Agricultural Water Management, 55: 239-248.
Chen, J.M., Liu, J. and Cihlar, J., 1996. Boreal ecosystems productivity simulator (BEPS) using remote sensing, meteorological and soil data, 1996 Annual Combined Meeting of the Ecological Society of America on Ecologists/Biologists as Problem Solvers. Bulletin of the Ecological Society of America, Providence, Rhode Island, USA.
Goldstein, A.H., Hultman, N.E., Fracheboud, J.M., Bauer, M.R., Panek, J.A., Xu, M., Qi, Y., Guenther, A.B. and Baugh, W., 2000. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agricultural and Forest Meteorology, 101: 113-129.
Jackson, R.D., Reginato, R.J. and Idso, S.B., 1977. Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research, 13: 651-656.
Kerr, Y.H., Lagouarde, J.P. and Imbernon, J., 1992. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window. Remote Sensing of Environment, 41: 197-209.
Kimball, J.S., Running, S.W. and Saatchi, S.S., 1999. Sensitivity of boreal forest regional water flux and net primary production simulations to sub-grid-scale land cover complexity. Journal of Geophysical Research-Atmospheres, 104(D22): 27789-27801.
Kimball, J.S., White, M.A. and Running, S.W., 1997. BIOME-BGC simulations of stand hydrologic processes for BOREAS. Journal of Geophysical Research-Atmospheres, 102(D24): 29043-29051.
Lagouarde, J.P., 1991. Use of NOAA-AVHRR data combined with an agrometeorological model for evaporation mapping. International Journal of Remote Sensing: 1853-1864.
Lagouarde, J.P. and McAneney, K.J., 1992. Daily sensible heat flux estimation from a single measurement of surface temperature and maximum air temperature. Boundary-Layer Meteorology, 59: 341-362.
Liu, J., Chen, J.M., Cihlar, J. and Chen, W., 1999. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. Journal of Geophysical Research-Atmospheres, 104(D22): 27735-27754.
Liu, J., Chen, J.M., Cihlar, J. and Park, W.M., 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 62(2): 158-175.
Mecikalski, J.R., Diak, G.R., Anderson, M.C. and Norman, J.M., 1999. Estimating fluxes on continental scales using remotely sensed data in an atmospheric-land exchange model. Journal of Applied Meteorology, 38(9): 1352-1369.
Monteith, J.L., 1965. Evaporation and the environment. Symposium of the Society of Exploratory Biology, 19: 205-234.
Nieuenhuis, G.J.A., Schmidt, E.A. and Tunnissen, H.A.M., 1985. Estimation of regional evapotranspiration of arable crops from thermal infrared images. Journal of Remote Sensing, 6(1319-1334).
Ostrom, E., 1991. Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge University Press, Cambridge.
Priestley, C.H.B. and Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review, 100: 81-92.
Running, S.W. and Hunt, E.R., Jr., 1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: J.R. Ehrlinger and C. Field (Editors), Scaling Processes between Leaf and Landscape Levels. Academic Press, San Diego, CA, pp. 141-158.
Sandholt, I. and Anderson, H.S., 1993. Derivation of actual evapotranspiration in the Senegalese Sahel, using NOAA-AVHRR data during the 1987 growing season. Remote Sensing of Environment, 46: 164-172.
Seguin, B. and Itier, B., 1983. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. International Journal of Remote Sensing, 4: 371-383.
Smith, R.C.G. and Choudhury, B.J., 1991. Analysis of normalized difference and surface temperature observations over southeastern Australia. International Journal of Remote Sensing, 12(10): 2021-2044.
White, M.A., Running, S.W. and Thornton, P.E., 1999. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology, 42(3): 139-145.
Xu, M., Debiase, T.A., Qi, Y., Goldstein, A. and Liu, Z., 2001a. Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiology, 21: 309-318.
Year 2 progress report
Tuesday, December 12, 2006
Biomathematics;: The principles of mathematics for students of biological and general science
with commonly recognized variants
introductory
brush up your arithmetic
some points in algebra
comparisons of magnitudes
shapes and numbers
logarithms
graphical aids to calculation
rates of change
the calculation of small changes
relations involving rates of change
lengths areas and volumes
acceleration greatest and least values
series
directed magnitudes
some useful integrals
physical and chemical magnitudes
methods of solving equations
matrices
change and probability
distributions
simple statistical procedures
colson notation arithmetic made easy
environmental data storage
Databases at The Swedish Museum of Natural History
http://www.nrm.se/researchandcollections/databases.4.5fdc727f10d795b1c6e80008884.htmlNorth American Breeding Bird Survey Home http://www.pwrc.usgs.gov/BBS/index.html
Ecological Monitoring and Assessment Network http://www.eman-rese.ca/eman/
environmental information centre(NERC)
"european topic center on catalogue of data sources" european environmental agency
forest inventory and analysis US forest service
global change master directory NASA
global population dynamics database center for population biology, NSF
ISRIC soil information system
LTER
national environmental data index NOAA nedi.gov
national environmental satellite data and information service NESDIS/ NOAA
National geophysical data center NGDC NOAA
National ocean data center NODC NOAA
national soils data access facility NSDAF NRCS
national water information system NWIS USGS
NERC data centres www.nerc.ac.uk
threatened and endangered species US FWS US forest and wildlife service
national climatic data center www.ncdc.noaa.gov
carbon dioxide information analysis center cdiac.esd.ornl.gov
distributed active archive center for biogeochemical dynamics(ORNL DAAC) www-eosdis.ornl.gov
Saturday, December 09, 2006
Research Beyond Google: 119 Authoritative, Invisible, and Comprehensive Resources | OEDb
How to Read a Scientific Research Paper--
Sunday, December 03, 2006
Actinidia deliciosa - Plants For A Future database report
Saturday, December 02, 2006
Weaver/Molecular Biology
绝对秘方保证新生儿不出黄疸!!!!
两种喂服方法:
1、用小毛笔沾药汁滴入新生宝宝口中,一次滴10-15滴,不限次数。
2、用温白开水稀释药汁,用奶瓶喂给新生宝宝喝,不限次数。
注意:
此方法用于1-5天内新生儿
新生宝宝服用后会多次排便,基本上会在出生3天内排净胎便,一但便便 已经从黑色转变为黄色,就可停药了。